Mechanisms regulating the development of oligodendrocytes and central nervous system myelin.

نویسندگان

  • S Mitew
  • C M Hay
  • H Peckham
  • J Xiao
  • M Koenning
  • B Emery
چکیده

Oligodendrocytes and the myelin they produce are a remarkable vertebrate specialization that enables rapid and efficient nerve conduction within the central nervous system. The generation of myelin during development involves a finely-tuned pathway of oligodendrocyte precursor specification, proliferation and migration followed by differentiation and the subsequent myelination of appropriate axons. In this review we summarize the molecular mechanisms known to regulate each of these processes, including the extracellular ligands that promote or inhibit development of the oligodendrocyte lineage, the intracellular pathways they signal through and the key transcription factors that mediate their effects. Many of these regulatory mechanisms have recurring roles in regulating several transitions during oligodendrocyte development, highlighting their importance. It is also highly likely that many of these developmental mechanisms will also be involved in myelin repair in human neurological disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر فاکتور مهار کننده لوکمیا بر بیان پروتئین اصلی میلین، Olig1 و Olig2 در کورتکس مغز موش‌های مبتلا به مالتیپل اسکلروزیس القا شده با Cuprizone

Background and purpose: Oligodendrocytes are responsible for myelin synthesis in the central nervous system (CNS). Olig1 and Olig2 play an important role in regulating the development of oligodendrocyte precursor cells (OLPs). Myelin basic protein (MBP) is the main component of myelin sheath. Leukemia inhibitory factor (LIF) has an important role in myelination and pathology of multiple scleros...

متن کامل

Insights into mechanisms of central nervous system myelination using zebrafish.

Myelin is the multi-layered membrane that surrounds most axons and is produced by oligodendrocytes in the central nervous system (CNS). In addition to its important role in enabling rapid nerve conduction, it has become clear in recent years that myelin plays additional vital roles in CNS function. Myelinating oligodendrocytes provide metabolic support to axons and active myelination is even in...

متن کامل

P 140: Stem Cells in Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Inflammation caused by immune cells destroy the myelin and then axon. CNS failure to complete repair results in permanent disabilities. Some types of stem cells have special potentials to repair these injuries and even cure MS. Neural crest stem cells with a mutual origin with CNS and the ability of differen...

متن کامل

Mechanisms of remyelination: recent insight from experimental models.

Oligodendrocytes and myelin play essential roles in the vertebrate central nervous system. Demyelination disrupts saltatory nerve conduction, leading to axonal degeneration and neurological disabilities. Remyelination is a regenerative process that replaces lost myelin. However, remyelination is disrupted in demyelinating diseases such as multiple sclerosis, at least partially, due to the failu...

متن کامل

The role of glia in neurological disease

Glial cells form a network in the central nervous system to support neurons and interact with them. The glia consist essentially of astrocytes that help with the nutrition of neurons and react in some cases of injury, oligodendrocytes that produce myelin, and microglia that are derived from the haemopoietic system and are concerned with the immunological defense of the nervous system. Experimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 276  شماره 

صفحات  -

تاریخ انتشار 2014